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Magnetic properties of gadolinium-doped�-tricalcium phosphate
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Abstract

The frequency of radiant energy used in the majority of electron spin resonance (ESR) spectrometers is approximately 9 GHz (X-band), in
the medium-frequency microwave region. Recently, high frequency microwave (Q-band) has been used to measure ESR spectra because high
frequency ESR enhances the sensitivity. In the present work, ESR spectra (X-band, Q-band) of gadolinium-doped�-tricalcium phosphate
(�-Ca3(PO4)2:Gd,�-TCP:Gd) were investigated. X-band and Q-band ESR spectra were recorded. Q-band ESR spectra was observed clearer
than X-band ESR spectra. The ESR spectra were assigned to the typical fine structure of the Gd3+ ion. The crystal-field parameters obtained
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. Introduction

Much attention has been paid recently to ESR analysis of
rivalent gadolinium ion (Gd3+) [1–4], which substitutes var-
ous compounds[5,6]. ESR is a powerful method to study the

agnetic properties and crystal-field symmetry of rare earth
ompounds. In general, it is difficult to observe an ESR spec-
rum of trivalent rare earth ions at room temperature because
f spin–orbit interaction and fast relaxation time. However,

he Gd3+ ion permitted easy detection of the ESR spectrum
ven at room temperature.

The Gd3+ ion has seven electron spins on the 4f orbital
spin angular momentumS = 7/2, orbital angular momentum
= 0, total angular momentumJ = 7/2) and the ground state
f the Gd3+ ion is referred to8S7/2. ESR spectroscopy is
uitable for measuring the above-mentioned electron spins.

In this investigation, magnetic properties about crystal-
eld parameters of the Gd3+ ion were examined using ESR
pectroscopy. The zero-field splitting of the Gd3+ ion is gener-

∗ Corresponding author. Tel.: +81 75 753 2888; fax: +81 75 753 6694.

ally as large as the X-band microwave energy. In the Q-
ESR measurements, the Zeeman term dominates the
field splitting in the spin Hamiltonian, and the spectr
exhibits a pattern that can be easily assigned[7,8]. The com
bined use of a X- and Q-band spectroscopy makes the an
simple and reliable.

2. Experimental methods

2.1. Sample preparation

Gadolinium-doped amorphous calcium phosphate3
(PO4)2·nH2O:Gd, ACP:Gd) as a starting material[9]
was prepared at 0◦C by rapid addition, with stirring
of a 0.100 mol dm−3 diammonium hydrogen phospha
((NH4)2HPO4) solution to a 0.167 mol dm−3 calcium nitrate
(Ca(NO3)2) solution containing gadolinium nitrate; the p
of the suspension turned out to be 10.00. The pH o
(NH4)2HPO4 solution was adjusted to 10.48 with conc
trated aqueous ammonia (NH4OH) prior to mixing, and th
E-mail address: kouichi@yamauchi.mbox.media.kyoto-u.ac.jp
K. Nakashima).

reaction was carried out in a closed system to reduce carbon
dioxide (CO2) contamination. The initial solid phase, formed
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immediately on mixing, was separated from the mother liquor
by filtration and washed with cold ammoniated water at pH
10.00. It was then dried with cold acetone and dry air.�-
TCP:Gd was prepared by a heat treatment of ACP:Gd at
1100◦C in an electric furnace (FP21, Yamato Scientific Co.
Ltd.) in air for 2 h and then gradually cooled to room tem-
perature. Incidentally, a platinum crucible was used for the
heat treatment of ACP:Gd. The elemental compositions of�-
TCP:Gd were determined with an ICP emission spectrometer
(SPS1200A, Seiko Instruments Inc. Co. Ltd.).

2.2. Characterization

Powder X-ray diffraction patterns of�-TCP and �-
TCP:Gd were measured with an X-ray diffractometer
(XRD-6000, Shimadzu Co. Ltd. 40 kV, 30 mA) using Cu
K� radiation with a wavelength of 0.15406 nm at room
temperature.

ESR measurements were carried out on�-TCP:Gd.
The ESR spectra were recorded equipped with a 100 kHz
magnetic-field modulation (X-band: JES-RE3X (JEOL Co.
Ltd.), Q-band: JES-FE3X (JEOL Co., Ltd.)). The ESR
microwave power was low enough to avoid the saturation
and the distortion of the spectrum.
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Fig. 1. Powder X-ray pattern of�-Ca3(PO4)2:Gd.

Structure of�-TCP:Gd[12,13] is illustrated inFig. 2. In
this description, emphasis is given to columns of ions of the
form ···PO4 Ca Ca Ca PO4··· that can be identified running
parallel to thec-axis. The Gd3+ ion is generally substituted
for Ca (4) site in A column.

ture of�
. Structure of �-Ca3(PO4)2:Gd

The powder X-ray diffraction pattern of�-TCP:Gd is
hown inFig. 1. �-TCP has the rhombohedral space gr
3c with unit cell a = b = 1.0439 nm andc = 3.7375 nm

hexagonal setting) with 21 formula units per hexagonal
ell [10,11]. The single phase of�-TCP:Gd was obtained
he Gd/Ca atomic ratio 8× 10−3.

Fig. 2. Struc
 -Ca3(PO4)2.
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4. Results and discussion

4.1. Spin Hamiltonian of Gd3+ ion

For the Gd3+ ion with 8S7/2 ground state, fine-structure
ESR spectra can be analyzed in terms of the following spin
Hamiltonian[7]:

H = HeZ + HFS = µ�H · g · S +
∑
k,q

B
q
kO

q
k,

k, q = 2, 4, 6 andk ≥ q = µ�H · g · S + 1
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E = (b2
2/3) (D andE are zero-field splitting constants).

The spin Hamiltonian used to describe the powder spectra
has been assumed to have second-order crystal-field which
are much larger than the high order terms, but which are
much smaller than the Zeeman interaction. The addition of
small higher order crystal-field terms to this Hamiltonian may
change the position but not the identification of the extremes.
T

where E′ = (b2
2)
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.Taking differences
between the three functionally similar pairs of transitions
denoted byMs↔ Ms− 1 and−Ms + 1↔ −Ms, one elimi-
nates much of the second-order correction and obtains
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where terms of the order ofE′ and F are omitted. These
equations may be used to determineb0

2, b0
4, andb0
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hereφ is the angle between the magnetic field and thx-
xis. Any pair of Eq.(4) can be solved for the two remaini
nknownsb2

2 andb4
4.
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Fig. 3. X-band ESR spectra of�-Ca3(PO4)2:Gd. Frequency, (a) 9.432 GHz,
(b) 9.194 GHz, modulation: 0.2× 1 mT, amplitude, (a) 1× 10, (b) 5× 1,
temperature (K) (a) room temperature, (b) 120 K.

4.2. X- and Q-band ESR spectra of β-Ca3(PO4)2:Gd

It is well-known that crystalline electric field interact
weakly with the8S7/2 ground state of the Gd3+ ion. The
crystal-field splitting for the Gd3+ ion is generally smaller
than that produced by the Zeeman interaction in the X-band
ESR experiments, and for the Gd3+ ions in most hosts, all
the resulting levels are appreciably populated at temperatures
above 4 K. The ESR spectrum generally consists of seven
anisotropic lines described by a spin Hamiltonian incorpo-
rating both crystal-field and Zeeman operators.

In observations made at X-band from room temperature
to 4 K, the ESR spectrum was found to consist of a single
set of seven lines. At Q-band ESR measurement from room
temperature to 120 K, the ESR spectra could be observed. X-
and Q-band ESR spectra of the Gd3+ ion were investigated at
both room temperature and 120 K (Figs. 3 and 4). Consider-
ation from the previous reports, the component of thez-axis
was observed in the present ESR spectra, mainly[13]. ESR
signal intensity of both X- and Q-band spectra at 120 K were
stronger than room temperature because of the population
difference. ESR intensity is proportional to the population
difference of the two states which is involved in the transi-
tions[14]. This is given by the Boltzemann distribution[15].
These ESR spectra were assigned to the typical fine structure

Fig. 4. Q-band ESR spectra of�-Ca3(PO4)2:Gd. Frequency, (a)
35.1293 GHz, (b) 35.2078 GHz, modulation: 0.2× 1 mT, amplitude, (a):
2× 100, (b): 1× 100, temperature (K), (a) room temperature, (b) 120 K.

Table 1
Observed spin Hamiltonian parameters for Gd3+ ion in �-Ca3(PO4)2:Gd

Room temperature 120 K

b0
2 −267.0 −287.1

b0
4 −1.5 1.6

b0
6 6.4 2.5

All crystal-field parameters are given in units of 10−4 cm−1. Q-band ESR
measurement.

of the Gd3+ ion. The transitions and magnetic field values for
the ESR line positions were determined. These values leads
to the crystal-field parameters ofb0

2, b0
4, andb0

6 from the cal-
culations on condition that Landé-g-factor = 2 of the Gd3+

ion [16]. The crystal-field parameters are listed inTable 1.
Compared with the previous reports[5,7,8], the crystal-field
parameters of Gd3+ in b-TCP:Gd are small.

5. Conclusions

The magnetic properties about crystal-field parameters
for �-TCP:Gd were examined in terms of X- and Q-band
ESR spectroscopy. The X-band ESR spectra exhibit the fine-
structure consisting of seven lines due to the Gd3+ ion. Q-band
ESR spectra was observed clearer than X-band ESR spec-
tra. Recording the powder ESR patterns of the Gd3+ ion,



K. Nakashima, J. Yamauchi / Journal of Alloys and Compounds 408–412 (2006) 761–765 765

spin Hamiltonian of the Gd3+ ion was determined from the
spectral analysis including higher order fine-structure param-
eters. Concluding the research, the values of the crystal-field
parameters and zero-field splitting constants could be esti-
mated.
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